While conventional lenses offer acceptable performance for many patients, newer technology in lens manufacturing is available. Freeform lenses, also referred to as "digital designed lenses", offer several levels of personalization for patients and their lifestyles. Conventional lenses are manufactured using backside surfacing only, with a standard cut frontside. Freeform lenses are made using an integrated double surface technology. Magnification changes from distance to near are cut on the front of the lens and horizontal power changes are cut on the back of the lens. This insures optimal vision across the entire lens, not just the optical center, eliminating the distortion or loss of clarity patients notice away from the center in conventional lenses.

Freeform lenses are available in single vision, lined bifocal, and progressive lenses. Our optician can assist you in deciding which level of Freeform lenses would be best for you, your prescription, and your lifestyle.


No matter what type of lens material you use, all lenses benefit from an anti-reflective coating (AR or anti-glare). AR coatings are similar to the coatings found on microscopes and camera lenses. They consist of several layers of metal oxides applied to the front and back lens surfaces that together block reflected light. The result is that reflections and halos around lights will disappear, especially at night. Wearers using AR coatings have better night vision and reduced eye fatigue when viewing computer screens for long periods versus those using non-coated lenses. Eliminating reflections on the lenses will improve their cosmetic appearance as well, making them look thinner or non-existent. Reflections on the outside of the lens are especially annoying as they distort the view of your eyes from onlookers. When they are eliminated, your eyes are more visible, you look better and you make better eye contact with others. An AR coating on the inside of sunglasses prevents light reflecting up into your eyes when the sun is to the side or behind you. Some AR coatings even prevent water spots from forming or skin oils from smudging!


Transitions® lenses automatically darken in the sunlight and lighten indoors. They are tremendously popular due to their inherent practicality. Transitions lenses contain photochromic dyes which cause the lens to activate—or darken—when exposed to ultraviolet (UV) rays from sunlight. Therefore, they only darken when sunlight hits them, and do not darken indoors. As outdoor light conditions change, the level of darkness adjusts, creating just the right level of tint and allowing just the right amount of light to enter the eyes at any given time. When the UV light diminishes, the lenses fade back to clear. This action allows Transitions lenses to help protect your eyes from the light you can see—reducing glare, diminishing eye strain and fatigue and enabling you to distinguish contrast more easily. Whats more, Transitions lenses block 100% of eye-damaging UVA and UVB rays, the same as a quality pair of sunglasses.


Many people know there are various options to make their glasses "thinner and lighter". The two general options for accomplishing this are polycarbonate or high-index lens material. Aside from its thinner and lighter qualities, polycarbonate material is also the most impact-resistant lens material available, so it is an obvious recommendation for children. High-index lenses are as thin or thinner than polycarbonate material. The high-index lens may provide better optics, especially with increasing prescriptions, than a polycarbonate material. Both materials also have a scratch-resistance and UV coating built into the lens. AR coatings are very important for high-index lenses, as they tend to have more reflection issues than other conventional lens materials. The AR coating will make these lenses look even thinner!


Laurin_Rinder_1.jpgFor those requiring a multifocal lens (bifocal or trifocal), the main decision is whether to have a line or no-line. Depending upon your lifestyle, one type of multifocal lens may be a better option than another. A no-line bifocal has a designated area in the lower portion of the lens that gradually increases in magnification as you look down. In comparison, a lined bifocal has a clearly delineated section of the lower portion of the lens that is essentially uniform in magnification throughout.

Sometimes, wearers who do a large amount of computer work may discover that a lined or a no-lined bifocal does not work very comfortably. For these individuals an occupational lens, or a lens designed specifically for computer work, may be the best option. There are several occupational lenses available—ask about them when you are here.

Many wearers will initially undergo a short adaptation period of a few days with either type of bifocal, which mainly consists of learning how to use the lens effectively. If you are taking longer than this to adjust to the new lens, it may be a good idea to have the glasses adjusted again to ensure proper fit and placement of the bifocal.

Contact Us

We look forward to hearing from you.

  • "We have noticed a huge improvement with our son during and after completing his vision therapy with A New Vision. He is reading at a much higher level, his grades have improved, his confidence has increased, and homework is not taking so long. His improvements are life changing! Thank you so much!"
    D.H. / Beaverton, OR

Featured Articles

Read up on informative topics

  • Fuchs' Corneal Dystrophy

    Fuchs' dystrophy (pronounced fooks DIS-truh-fee) is an eye disease characterized by degenerative changes to the cornea’s innermost layer of cells. The cause for Fuchs' dystrophy is not fully understood. If your mother or father has the disease, then there is roughly a 50 percent chance that you will ...

    Read More
  • Age-Related Macular Degeneration

    One of the leading causes of vision loss in people who are age 50 or older is age-related macular degeneration (AMD). This common eye condition leads to damage of a small spot near the center of the retina called the macula. The macula provides us with the ability to clearly see objects that are straight ...

    Read More
  • Diabetic Eye Diseases

    Diabetes is a condition that involves high blood sugar (glucose) levels. This can affect many parts of the body, including the eyes. One of the most common diabetic eye diseases is diabetic retinopathy, which is also a leading cause of blindness in American adults. Diabetic Retinopathy Diabetic retinopathy ...

    Read More
  • Presbyopia

    Somewhere around the age of 40, most people’s eyes lose the ability to focus on close-up objects. This condition is called presbyopia. You may start holding reading material farther away, because it is blurry up close. Reading suddenly gives you eyestrain. You might wonder when manufacturers started ...

    Read More
  • Laser Cataract Surgery

    The only way to correct the clouded vision caused by advanced cataracts is surgical intervention. If you find yourself pursuing cataract surgery to remove one or both cataract-disease lenses, you may be wondering what surgical approaches are available for treatment. Although eye surgeons have successfully ...

    Read More
  • Cataract Surgery

    With cataract surgery, your ophthalmologist removes the cataract-diseased lens of your eye. The ophthalmologist then replaces your natural lens with an artificial one. The Procedure This outpatient procedure is generally safe and takes less than an hour. Your ophthalmologist will dilate your pupil ...

    Read More
  • Peripheral Vision Loss

    Normal sight includes central vision (the field of view straight ahead) and peripheral vision (the field of view outside the circle of central vision). The inability to see within a normal range of view often indicates peripheral vision loss. In severe cases of peripheral vision loss, individuals only ...

    Read More
  • Presbyopia

    As we age, our eyes—like the rest of our bodies—begin to lose flexibility and strength. When this happens to the lens of the eye and its surrounding muscles, your lens will become stiff. This makes it harder to see close objects clearly because the eyes can't focus properly. It's a natural part of ...

    Read More
  • Patches

    Eye patches are used to strengthen muscle control in weak eyes. By placing a patch over the strong eye, the weaker eye is forced to do the heavy lifting. While it may be uncomfortable for the patient at first, the muscle controlling the weaker eye will become tougher and more resilient. This will allow ...

    Read More
  • How to Transition Into Different Lighted Situations

    Does it take a little while for your eyes to adjust to the dark? Try a few of these tips. ...

    Read More